Modified Quasi-boundary Value Method for Cauchy Problems of Elliptic Equations with Variable Coefficients
نویسنده
چکیده
In this article, we study a Cauchy problem for an elliptic equation with variable coefficients. It is well-known that such a problem is severely ill-posed; i.e., the solution does not depend continuously on the Cauchy data. We propose a modified quasi-boundary value regularization method to solve it. Convergence estimates are established under two a priori assumptions on the exact solution. A numerical example is given to illustrate our proposed method.
منابع مشابه
Solving a Cauchy problem for a 3D elliptic PDE with variable coefficients by a quasi-boundary-value method
An ill-posed Cauchy problem for a 3D elliptic PDE with variable coefficients is considered. A well-posed quasi-boundary-value (QBV) problem is given to approximate it. Some stability error estimates are given. For the numerical implementation, a large sparse system is obtained from the discretizing the QBV problem using finite difference method (FDM). A LeftPreconditioner Generalized Minimum Re...
متن کاملUniform Convergence of a Monotone Iterative Method for a Nonlinear Reaction-Diffusion Problem
The dynamics of matrix coupling with an application to Krylov methods p. 14 High precision method for calculating the energy values of the hydrogen atom in a strong magnetic field p. 25 Splitting methods and their application to the abstract Cauchy problems p. 35 Finite difference approximation of an elliptic interface problem with variable coefficients p. 46 The finite element method for the N...
متن کاملNvestigation of a Boundary Layer Problem for Perturbed Cauchy-Riemann Equation with Non-local Boundary Condition
Boundary layer problems (Singular perturbation problems) more have been applied for ordinary differential equations. While this theory for partial differential equations have many applications in several fields of physics and engineering. Because of complexity of limit and boundary behavior of the solutions of partial differential equations these problems considered less than ordinary case. In ...
متن کاملIncreased stability in the Cauchy problem for some elliptic equations
We derive some bounds which can be viewed as an evidence of increasing stability in the Cauchy Problem for the Helmholtz equation with lower order terms when frequency is growing. These bounds hold under certain (pseudo)convexity properties of the surface where the Cauchy data are given and of variable zero order coefficient of the Helmholtz equation. Proofs use Carleman estimates, the theory o...
متن کاملAn optimal analytical method for nonlinear boundary value problems based on method of variation of parameter
In this paper, the authors present a modified convergent analytic algorithm for the solution of nonlinear boundary value problems by means of a variable parameter method and briefly, the method is called optimal variable parameter method. This method, based on the embedding of a parameter and an auxiliary operator, provides a computational advantage for the convergence of the approximate soluti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011